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Rapid Note

Fractal dimension of Siegel disc boundaries
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Abstract. Using renormalization techniques, we provide rigorous computer-assisted bounds on the Haus-
dorff dimension of the boundary of Siegel discs. Specifically, for Siegel discs with golden mean rotation
number and quadratic critical points we show that the Hausdorff dimension is less than 1.08523. This is
done by exploiting a previously found renormalization fixed point and expressing the Siegel disc boundary
as the attractor of an associated Iterated Function System.

PACS. 05.45.+b Theory and models of chaotic systems – 47.53.+n Fractals

The celebrated Kolmogorov-Arnold-Moser (KAM) theo-
rem (see for instance [1]) is arguably one of the most im-
portant results in the theory of dynamical systems. For an
integrable Hamiltonian system with N degrees of freedom,
the motion in the 2N -dimensional phase space is confined
to surfaces that are (topologically) N -dimensional tori. In
brief, the KAM Theorem says that under a small enough
perturbations from integrable, almost all of the motion re-
mains restricted to surfaces that are topologically equiva-
lent to N -dimensional tori. These tori support quasiperi-
odic motion, and persist up to some critical perturbation
strength dependent on the rotation number. The analo-
gous phenomenon for maps of the circle is important in
the study of dissipative systems [2].

A precursor of the KAM theorem was the proof by
Siegel [20] of the existence of a domain of linearizability,
known as a Siegel disc, around an irrationally indifferent
fixed point of a complex map. This problem forms a model
for more complicated problems in nonlinear dynamics, in
which transitions from quasiperiodicity to chaos are found
to have universal characteristics. The mappings we have
in mind are of the form

z 7→ f(z) = λz +O(z2) with λ = exp(2πiν) .

Figure 1 shows a Siegel disc for a quadratic map. Analytic
curves persist up to the fractal boundary.

In the above problems the crucial question is the ex-
istence of a conjugacy to rigid rotation. This problem is
plagued by small divisors; it is heavily dependent on the
number-theoretic properties of the rotation number ν. The
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Fig. 1. Siegel disc for a golden mean quadratic mapping.

key breakthrough was the demonstration that a conjugacy
exists provided the rotation number satisfies a Diophan-
tine condition:∣∣∣∣ν − p

q

∣∣∣∣ > c

|q|2+µ
for all integers p, q ,

for some constants c > 0, µ ≥ 0. Indeed for the Siegel disc,
Yoccoz [24] has shown (for quadratic maps) that conju-
gacy exists if and only if the rotation number satisfies the
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weaker Brjuno condition:∑ log qn+1

qn
< +∞ ,

where (qn) are the denominators in the convergents of the
continued fraction expansion of ν.

The transitions from quasiperiodicity to chaos in these
problems, and the invariant structures present at a critical
parameter value, are observed to possess universal scal-
ing properties, which have been analysed using renormal-
ization group techniques. Because of its simple continued
fraction expansion, the simplest case is when the rotation
number is the golden mean, (

√
5−1)/2 = 0.61803 . . ., and

most attention has focussed on this case. We too confine
our attention to the golden mean.

Perhaps the most straightforward application of renor-
malization group methods to the study of universality in
dynamical systems was the explanation offered by Feigen-
baum [12] for the universal features observed in the period-
doubling route to chaos in iterated unimodal maps of the
interval. This explanation centres on the existence of a
hyperbolic fixed point for a renormalization operator act-
ing on a space of functions. Existence of the fixed point,
and the nature of the spectrum of the derivative of the
renormalization operator there, allows the deduction of
universal features for all maps attracted to the fixed point
under iteration of the operator.

A renormalization explanation for universality in circle
maps was constructed by Ostlund et al. [19] and Feigen-
baum et al. [13], and for area-preserving twist maps by
MacKay [16]. These explanations rely on the existence of
both a simple fixed point for the renormalization opera-
tor, responsible for the presence of quasiperiodic motion
in the sub-critical case, and also a critical fixed point for
the operator, that controls the universal scaling features
associated with the critical parameter value in these prob-
lems.

Manton and Nauenberg [15] made corresponding nu-
merical observations of universality for Siegel discs in com-
plex maps, and a renormalization explanation of the type
mentioned above was later offered by Widom [23].

There is currently a rich mixture of both analytical and
computer-assisted rigorous results as well as much numer-
ical and heuristic work. The existence and hyperbolicity of
a fixed point for the Feigenbaum renormalization opera-
tor was established by Lanford [14], and Campanino et al.
[5,6] using rigorous computer-assisted means, and later by
Epstein [10] by analytical methods. Analogous proofs for
the case of period-doubling in area-preserving maps were
given by Eckmann et al. [8]. A rigorous computer-assisted
proof of the existence and hyperbolicity of the golden-
mean critical circle maps fixed point, analogous to that of
Lanford, was performed by Mestel [17], and Eckmann and
Epstein have since provided an analytic proof [7]. Stirne-
mann [21] has given a computer-assisted proof of existence
in the case of golden-mean Siegel discs.

There is still no analytic proof of the existence of a
critical fixed point for Siegel discs, and no proof at all of
the existence of a critical fixed point for twist maps.

A by-product of the computer-assisted proofs is that
they also provide rigorous bounds on the universal fixed-
point functions. We have been able to take these bounds
and cast the Siegel disc boundary as the attractor of an
associated iterated function system (IFS). We are then
able to use results from the theory of IFSs to obtain a
rigorous upper bound on the Hausdorff dimension of the
boundary.

The result is that we are able to prove that the Haus-
dorff dimension is less than 1.08523.

A nonrigorous version of our method produces the
bounds 1.00119 to 1.07967. A previous numerical estimate
1.01 appears in [18].

We use a different formulation of the operator from
Widom (see [21]), and write the renormalization operator
as the map of pairs:

(E(z), F (z)) 7→ (Cα−1F (αCz), Cα−1FE(αCz)) ,

where α = F (0) to preserve the normalisation E(0) = 1,
and where C means complex conjugate. The difference in
our formulation is that α is a complex scaling factor. We
study quadratic critical points, so the functions E and F
are even and may thus be written in the form E(z) =
U(z2) and F (z) = V (z2). The renormalization operator is
then

(U(z), V (z)) 7→ (Cα−1V (α2Cz), Cα−1V QU(α2Cz)) ,

with α = V (0), and where Q is the map z 7→ z2.
Stirnemann [21] proves the existence of a fixed-point

pair, (U, V ), of this operator defined on domains DU , DV

respectively. In [3], the existence of the (universal) invari-
ant curve for the fixed-point pair was deduced by applying
the necklace construction of [22], in which a sequence of
sets (domain pairs) is constructed iteratively by applying
the maps of the renormalization fixed-point pair to their
domains. Under certain hypotheses, the domains converge
to a piece of the invariant curve (the necklace). These hy-
potheses were verified in [3].

The mapping defining the necklace construction is

(M,N) 7→
(
α2CN, (α2CM) ∪ (QUα2CN)

)
.

We may eliminate M from the corresponding fixed-point
equation to obtain the mapping

N 7→ (|α|4N) ∪ (QUα2CN) .

This second form is recognisable as a standard IFS (see for
instance [11]) consisting of the two maps |α|4 and QUα2C
acting on an initial (single) domain. By computer-assisted
means we have verified that these maps are contractions.
(Note that one of the maps, |α|4, is a similarity, whilst the
other is an analytic function of z̄ = Cz.) The fact that the
maps are contractions guarantees the existence of an IFS
attractor. However, by bounding the contraction factors
of the maps we may also deduce bounds on the Hausdorff
dimension of the attractor. We use the result (see [11])
that if an IFS consists of n contractions with contraction
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...

Fig. 2. Steps 0, 1, 2, and 7 in the application of the IFS.

factors κi then the solution s of the partition function
equation

n∑
i=1

κsi = 1

is an upper bound on the Hausdorff dimension of the
attractor of the IFS. Bounds on the contraction fac-
tors themselves are obtained by rigorously bounding the
derivatives of the maps on convex domains and applying
the mean value theorem. The sharpness of the bounds on
the derivatives of these maps will dictate the sharpness of
our eventual bounds on the Hausdorff dimension obtained
by solving the partition function equation. In fact we con-
sider iterates of the initial IFS to sharpen our bounds by
reducing the domains on which the derivatives need to be
calculated. This is at the expense of having to consider
composites of the mappings.

Figure 2 shows iterates of the initial domain under the
IFS converging on the attractor. Note the similarity with
the boundary curve in Figure 1.

This approach will also yield lower bounds for the
Hausdorff dimension. The only substantial extra condi-
tion to verify is the “open set condition” of [11] (Sect.
9.2). Unfortunately the only lower bounds our method has
provided so far are less than one.

The dimension bounds calculated are for the universal
fixed point of the renormalization transformation. Haus-
dorff dimension is invariant under this transformation, and
so is shared by maps attracted to the fixed point.

Full details of these calculations appear in [4].

This work was carried out under EPSRC (UK) grant
GR/H38386
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